Affect-LM: A Neural Language Model for Customizable Affective Text Generation
نویسندگان
چکیده
Human verbal communication includes affective messages which are conveyed through use of emotionally colored words. There has been a lot of research in this direction but the problem of integrating state-of-the-art neural language models with affective information remains an area ripe for exploration. In this paper, we propose an extension to an LSTM (Long Short-Term Memory) language model for generating conversational text, conditioned on affect categories. Our proposed model, Affect-LM enables us to customize the degree of emotional content in generated sentences through an additional design parameter. Perception studies conducted using Amazon Mechanical Turk show that AffectLM generates naturally looking emotional sentences without sacrificing grammatical correctness. Affect-LM also learns affectdiscriminative word representations, and perplexity experiments show that additional affective information in conversational text can improve language model prediction.
منابع مشابه
Neural Network Based Bilingual Language Model Growing for Statistical Machine Translation
Since larger n-gram Language Model (LM) usually performs better in Statistical Machine Translation (SMT), how to construct efficient large LM is an important topic in SMT. However, most of the existing LM growing methods need an extra monolingual corpus, where additional LM adaption technology is necessary. In this paper, we propose a novel neural network based bilingual LM growing method, only...
متن کاملSequence memoizer based language model for Russian speech recognition
In this paper, we propose a novel language model for Russian large vocabulary speech recognition based on sequence memoizer modeling technique. Sequence memoizer is a long span text dependency model and was initially proposed for character language modeling. Here, we use it to build word level language model (LM) in ASR. We compare its performance with recurrent neural network (RNN) LM, which a...
متن کاملParaphrastic Language Models
Natural languages are known for their expressive richness. Many sentences can be used to represent the same underlying meaning. Only modelling the observed surface word sequence can result in poor context coverage and generalization, for example, when using n-gram language models (LMs). This paper proposes a novel form of language model, the paraphrastic LM, that addresses these issues. A phras...
متن کاملDecision support with text-based emotion recognition: Deep learning for affective computing
Emotions widely affect the decision-making of humans. This is taken into account by affective computing with the goal of tailoring decision support to the emotional states of individuals. However, the accurate recognition of emotions within narrative documents presents a challenging undertaking due to the complexity and ambiguity of language. Even though deep learning has evolved as the state-o...
متن کاملApproaches for Neural-Network Language Model Adaptation
Language Models (LMs) for Automatic Speech Recognition (ASR) are typically trained on large text corpora from news articles, books and web documents. These types of corpora, however, are unlikely to match the test distribution of ASR systems, which expect spoken utterances. Therefore, the LM is typically adapted to a smaller held-out in-domain dataset that is drawn from the test distribution. W...
متن کامل